Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Peter G. Jones, ${ }^{\text {a }}{ }^{*}$ Peter
 Bubenitschek, ${ }^{\text {b }}$ Henning Hopf ${ }^{\text {b }}$ and Reiner Stamm ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.121$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2,7-Dimethylocta-2,3,5,6-tetraene

The molecule of the title compound, $\mathrm{C}_{10} \mathrm{H}_{14}$, displays inversion symmetry. The allenic bond lengths are 1.3067 (16) and 1.3126 (16) \AA.

Comment

Conjugated bis-allenes are interesting starting materials in organic chemistry and have been used, in particular, as diene components in Diels-Alder addition (for a summary, see Hopf, 2000). In a study of the behaviour of bis-allenes in ionic reaction, we have prepared one of the oldest known bisallenes, the title compound 2,7-dimethyl-octa-2,3,5,6-tetraene, (I) (Skattebøl \& Solomon, 1965), and subjected it to structure determination.

The molecule (Fig. 1) displays crystallographic inversion symmetry, because of which the standard IUPAC numbering was not used. Molecular dimensions may be regarded as normal [cf. e.g. the standard allenic $\mathrm{C}=\mathrm{C}$ bond length of $1.307 \AA$ (Allen et al., 1987)]. The allenic angle C2-C4-C5 is essentially linear at $179.89(13)^{\circ}$ and the angle $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$ $124.04(13)^{\circ}$ somewhat wider than the standard $s p^{2}$ value [symmetry code: (i) $1-x, 1-y,-z$]. The shortest intermolecular contact is $\mathrm{H} 1 A \cdots \mathrm{H} 1 C(-0.5+x, 0.5-y,-0.5+z)$, 2.55 (2) \AA, and the molecules pack in the common herringbone pattern (Fig. 2).

Figure 1
The molecule of the title compound in the crystal. Ellipsoids represent 50% probability levels.

Received 4 February 2002 Accepted 7 February 2002 Online 22 February 2002

Figure 2
Packing diagram of the title compound, projected along the a axis. Radii are arbitrary.

Experimental

Crystals were grown by sublimation.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{14}$
$M_{r}=134.21$
Monoclinic, $P 2_{1} / n$
$a=4.644$ (2) A
$b=16.278$ (6) \AA
$c=6.037$ (2) \AA
$\beta=96.12(3)^{\circ}$
$V=453.8(3) \AA^{3}$
$Z=2$

Data collection

Nicolet R3 diffractometer
ω scans
Absorption correction: none
2589 measured reflections
1034 independent reflections 810 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$
$D_{x}=0.982 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 50 reflections
$\theta=10-12.5^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=178$ (2) K
Prism, colourless
$0.70 \times 0.25 \times 0.25 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ} \\
& h=-5 \rightarrow 6 \\
& k=-21 \rightarrow 21 \\
& l=-7 \rightarrow 7 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 147 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0677 P)^{2}\right. \\
& \quad+0.0479 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.121$
$S=1.06$
1034 reflections
74 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.5076(17)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.3126(16)$
$\mathrm{C} 2-\mathrm{C} 4$	$1.3067(16)$	$\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$1.470(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.5067(17)$		
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$	$122.22(11)$	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5$	$179.89(13)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 1$	$121.93(10)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$124.04(13)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$115.85(10)$		

Symmetry code: (i) $1-x, 1-y,-z$.

A rigid-body libration correction (Schomaker \& Trueblood, 1968) was performed successfully $\left(R_{\text {lib }} 0.078\right)$ and gave the following corrected bond lengths (\AA): $\mathrm{C} 1-\mathrm{C} 21.518, \mathrm{C} 2-\mathrm{C} 31.518, \mathrm{C} 5-\mathrm{C} 5{ }^{\mathrm{i}}$ $1.477 \AA$. The corrections to the other bonds, $\mathrm{C} 2-\mathrm{C} 4$ and $\mathrm{C} 4-\mathrm{C} 5$, were calculated as zero, which is consistent with the expected libration pattern of the molecule.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: $X D I S K$ (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A . Weinkauf for technical assistance.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Hopf, H. (2000). Classics in Hydrocarbon Chemistry, pp. 171-178. Weinheim: Wiley-VCH.
Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, USA.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Skattebøl, L. \& Solomon, S. (1965). J. Am. Chem. Soc. 87, 4506-4513.

